
Athena Tutorial @ BNL – Wednesday, August 27, 2003

Algorithms & EDM
Exercise using a Z to ee algorithm in Athena

S. Rajagopalan

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Outline

The Athena Transient Data Store a.k.a. StoreGate (SG)
How algorithms interact with this store

Writing two algorithms:
• A Z to ee algorithm that builds Z objects from

previously built egamma candidate objects (output of
standard Reconstruction)

• A Z to ee CBNT algorithm that fills an ntuple with the
computed Z to ee variables.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

StoreGate

The ATLAS Transient Data Model Infrastructure

To manage Data Objects life-time
• SG manages data objects memory (owns them)
• SG interacts with the persistency to read/write data objects.

To access Data Objects
• Type-Centric Naming service

Give me the TrackCollection called “MyTracks”
• Navigation

Persistable references (DataLinks and ElementLinks)
• Memory Management Tools

DataPtr, DataVector, DataList
• History

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Objectives

Learn how to access data objects using StoreGate
• Locating event and detector store
• Configuring your data objects

how to use of memory mgmt tools
• How to record/retrieve by TYPE

Optionally using keys
• Retrieving of all data objects of a given type
• How to use Data Links

Persistable relationships

This will be done in the context of writing a Z to ee
analysis algorithm in Athena.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

The Data Flow

Tracking

Calorimeter
Clustering

Electron/photon
Identification

StoreGate StoreGate
Transient EventTransient Event

Data StoreData Store

Tracker digitsTracker digits

TracksTracks

Calorimeter DigitsCalorimeter Digits

TracksTracks, , ClustersClusters

Calorimeter clustersCalorimeter clusters

Electron/photonElectron/photon

Electrons/photonsElectrons/photons

Real dataflowReal dataflow

Apparent dataflowApparent dataflow

TracksTracks

ClustersClusters

Tracker digitsTracker digits

CaloDigitsCaloDigits

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Accessing StoreGate

StoreGateSvc is the Gaudi service that allows to record and
retrieve data objects.

In the initialize method of your algorithm:
StatusCode sc = service(“StoreGateSvc”, m_storeGate);
declare the event store pointer, m_declare the event store pointer, m_storeGatestoreGate as private data member of type as private data member of type

StoreGateSvcStoreGateSvc**
This caches m_This caches m_storeGatestoreGate and and you do not have to call the and and you do not have to call the serviceLocatorserviceLocator

to retrieve the pointer to to retrieve the pointer to StoreGateSvcStoreGateSvc every event in your execute every event in your execute
method.method.

If you need access to the detector store as well, add:
StatusCode sc = service(“DetectorStore”, m_storeGate);

Athena Tutorial @ BNL – Wednesday, August 27, 2003

What is a Data Object?

A Data Object is an object recorded to StoreGate
• and StoreGate is a store of Data Objects…

Most C++ object can be stored to SG and hence are Data
Objects
• Must provide a default and a copy constructor (if you are lazy

the compiler will provide them for you)
• Must be associated to a magic number: the CLID

A Data Object is created on the heap
ZeeContainer *pZeeCont (new ZeeContainer);

A recorded Data Object is owned by StoreGate
• NEVER, EVER delete a data object after it has been

recorded!!!
m_storeGate → record(pZeeColl, myKey);
//DON’T delete pZeeColl!; //SG will do it for you

Athena Tutorial @ BNL – Wednesday, August 27, 2003

The CLID Thing…

Take a look at ZeeCollection.h
typedef std::vector<ZeeObject> ZeeContainer;
CLASS_DEF(ZeeContainer, 9903, 1)

//“9903” is the famous CLID, used by persistency
//“1” is the version number (currently ignored by SG)

Every data object in StoreGate carries a CLID
ZeeContainer has a CLID, but Zee object does not

CLID must be unique through Atlas
CLIDSvc and associated scripts:

provide new CLIDs for new classes
check uniqueness

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Which Collection?

Most Data Objects are Collections OF
• LArDigits, Tracks, egamma, …

Prefer to use STL containers whenever is possible
typedef std::vector<ZeeObject> ZeeContainer;

• Simple, optimized, no memory mgmt issue, standard
• Unfortunately don’t marry well with Abstract Classes

Use Atlas DataVector and DataList when you must
• CaloCell is the base class (ABC) for all calorimeter cells

typedef DataVector<CaloCell> CaloCellContainer
• CaloCellContainer behaves like a vector<CaloCell*> that

owns its CaloCells

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Recording an Object

Providing a Key:
static const bool SETCONST(false);
StatusCode sc =

m_storeGate → record(pZeeCont, m_ZeeContName, SETCONST);
where :where :
pZeeContpZeeCont is a pointer to your is a pointer to your ZeeContainerZeeContainer (a DataObject)(a DataObject)

m_m_ZeeContNameZeeContName is an identifier for your data object also specified in is an identifier for your data object also specified in
your your jobOptionsjobOptions in a similar way. It can be a simple string like: in a similar way. It can be a simple string like:
““MyZeeContMyZeeCont””

Locking an Object (if not done during record)
StatusCode sc = m_storeGate → setConst(pZeeCont);

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Retrieving an Object

Here is an example on how to retrieve a specific
data object:

const ZeeContainer* pZeeCont; // Note the const!
sc = m_storeGate → retrieve(pZeeCont, m_ZeeContKey);

ZeeContainer::const_iterator fZ(pZeeCont → begin());

ZeeContainer::const_iterator eZ(pZeeCont → end());

// The following sums the et of the Z objects

while (fZ != eZ) { etTot += fz++ → et() }

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Store Access Policy

An object in SG may be modified until it is setConst
Access to a const Data Object:Access to a const Data Object:

const TrackCollection* pTracks;
m_storegate → retrieve(pTracks, key);
• Only const methods in the Data Object are accessible!

class Track {class Track {
void set_pT(float pT) { m_pT = pT; } // NO ACCESS
float get_pT const { return m_pT; } // ACCESS OK
… }

• Must use const-iterators to iterate over TrackCollection
If you do not specify const, this will force a check. If the daIf you do not specify const, this will force a check. If the data object you ta object you

are accessing is are accessing is ‘‘constconst’’, then an error is returned if accessing it in a , then an error is returned if accessing it in a
nonnon--const way.const way.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Retrieving all Data Objects of
Given Type

If you have several TrackCollection instances in SG, here is an example on
how to retrieve ALL of them:

const DataHandle<TrackCollection> dbegin, dend;

m_pEvtStore → retrieve(dbegin, dend);

for (; dbegin != dend; ++ dbegin) // loop over TrackCollections

{
dbegin → method_in_trackCollection();
TrackCollection::const_iterator iter dbegin → begin();
for (; iter != dbegin → end(); ++iter) // loop over TrackObjects

{
(*iter) → TrackPT(); // call some method in Track

}
}

Athena Tutorial @ BNL – Wednesday, August 27, 2003

EDM Documentation

a) StoreGate Guide (for architectural description)
b) The ATLAS Raw Data Model Document

Linked from the ATLAS EDM web page:
•• http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architechttp://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architec

ture/ture/EventDataModelEventDataModel

c) The Reconstruction Task Force Document (RTF)
•• Linked from Linked from

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/domainhttp://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/domain
s/Reconstructions/Reconstruction

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Exercise

In Reconstruction/RecExample/ZeeRec/src, you will find:
ZeeBuilder.cxx
This is the top algorithm that will find the Z’s.
CBNT_Zee.cxx
Top Algorithm that will fill the ntuple with Z parameters

DataClasses:
ZeeObject
an instance for each Z candidate found
ZeeContainer
a collection of Z’s recorded in StoreGate

The header files, properties and variable initialization is already done
for you. Use these.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Overview of the Exercise

The standard ATLAS reconstruction constructs egamma
candidates. These are available in StoreGate.

We will write a ZeeRec algorithm:
• that retrieves collection of egamma candidates from

StoreGate

• Loops over the egamma candidates in this collection and
selects a subset of these candidates using some cuts.

• pair’s them and forms Z to ee candidates (Zee Object)

• if they are within the mass window, pushes the zee candidate
into a Zee collection.

• Records the Zee collection in StoreGate.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder

a) Retrieve the const egammaContainer from StoreGate. The
egammaContainer key is m_egContainerName. Let us call this
collection egColl.
const egammaContainer* egColl;
StatusCode sc = m_storeGate->retrieve(egColl, m_egContainerName);
If (sc.isFailure()) {

mlog << MSG::ERROR << “ Error retrieving egamma Container “
<< endreq;
return sc;

}
b) Create a temporary vector of egamma (and other initialization):

std::vector<const egamma*> myEGcontainer;
Some other variables we are going to use are already initialized:

const egamma* eg = 0; // pointer to egamma object
const LArCluster* clus = 0; // pointer to LAr Cluster object
const EMShower* shower = 0; // pointer to an EM Shower object
int nEgHighPt = 0; // number of high PT egamma candidates

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder (2)

c) Loop over the egamma’s in the container:
egammaContainer::const_iterator itr = egColl->begin();
egammaContainer::const_iterator iend = egColl->end();
for (; itr != iend; itr++) {

eg = *itr; // Note: eg is already defined for you!
// <- here we can apply cuts and select the eg’s (step d,e,f,g)

}
The egamma objects (eg) has a pointer to various objects:

The pointer to the calorimeter cluster (clus)
The pointer to a ShowerShape object (shower)
The pointer to the Track (if one found) (not used in this exercise)
The pointer to a Track Parameter object. (not used in this exercise)

There are accessor methods for these in the egamma object.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder (3)

INSIDE THE PREVIOUS LOOP of step c):
d) access the pointer to the cluster and shower shape

objects, using the accessors in egamma object
clusclus == egeg-->get_Cluster(); >get_Cluster(); // Note:// Note: clusclus is already defined for youis already defined for you
shower =shower = egeg-->get_>get_EMShowerEMShower(); // Note: shower is already defined(); // Note: shower is already defined

e) Check if clus and shower are non-zero (valid).
if (if (clus clus != 0 && shower != 0) { …!= 0 && shower != 0) { …

f) If so, check if the cluster ET is > m_electronPtMin
if (if (clusclus-->et() > m_>et() > m_electronPtMinelectronPtMin) { …) { …

g) If so, push back the egamma object in your list
myEGcontainermyEGcontainer.push_back(.push_back(egeg););
} } // close brackets for the two if conditions} } // close brackets for the two if conditions

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder (4)

If you finished a-g, you have successfully accumulated a
list of egamma that pass the minimum PT cut in your
private egamma container (myEGcontainer)

Now you will have to match the two egamma objects
that give you the Z. Note that you could get lucky and
find more than one Z: hence you have to pair all
possible egamma objects and check if any are in the Z
mass window.

For the sake of the exercise, we will ignore requiring a
track associated with the egamma. We only required a
simple PT cut.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder(5)

g) Create a ZeeContainer, here you will collect all the Z’s
you will find. Already done for you!
ZeeContainer* theZeeContainer = new ZeeContainer();

h) Check how many egamma objects you have:
n_eg_highPT = myEGcontainer.size();

i) Check if n_eg_highPT >= 2 (2 is set via property!)
ii) Make a double loop over your private list of egamma’s:
iii) Create a Zee object and pass the two egamma’s to the Zee
iv) Check if the Zee mass is in window
v) If yes, push back the Zee in your container and print message

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder (6)

If (n_eg_highPT >= 2) {
int I_eg1 = 0;
int i_eg2=0;
for (i_eg1=0 ; i_eg1<n_eg_highPt-1 ; i_eg1++) {

for (i_eg2=i_eg1+1 ; i_eg2<n_eg_highPt ; i_eg2++) {
// Create a Zee object:

ZeeObject zee ;
// Pass the egamma object to the Zee object

zee.setDaughters(theEgContainer[i_eg1],theEgContainer[i_eg2]);
// Check if the Zee is within the mass window

if (zee.mass() > m_ZMassMin && zee.mass() < m_ZMassMax) {
// put the found Zee in Zeecontainer
theZeeContainer->push_back(zee);

// Print out a message that you have found a candidate
mlog << MSG::INFO << "Candidate " << i_eg1 << i_eg2 << " mass "

<< zee.mass() << endreq;
} } } }

Athena Tutorial @ BNL – Wednesday, August 27, 2003

ZeeBuilder (7)

Now, you have your ZeeContainer.
Record it in StoreGate.

sc = m_sc = m_storeGatestoreGate-->record(>record(theZeeContainertheZeeContainer, m_, m_ZeeContainerNameZeeContainerName););
if (sc.if (sc.isFailureisFailure()) { // print an error message and return sc }()) { // print an error message and return sc }

That is it, you are done.
Now, you could do the same exercise for combining

truth electrons and forming a Z object. Then you
could record the ZeeTruthContainer also in StoreGate
and compare the results of the two containers.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

CBNT_Zee

The CBNT file does the following:
In the initialize method, it creates an ntuple and adds
items to this ntuple.

In the execute method:
It retrieves the ZeeContainer from StoreGate that you
recorded in the ZeeBuilder algorithm.
It loops through all the Zee
It extract relevant parameters from the Zee object
It fills the ntuple

All this is done for you… But commented out. Look
through it and uncomment code.

Athena Tutorial @ BNL – Wednesday, August 27, 2003

Zee JobOptions

Zee jobOptions controls all the parameters used in the Zee
algorithms. It currently includes:

• Name of the shared library
• Name of the Top Algorithm to be executed
• Specific properties:

• Name of the input egamma Collection
• Name of the output Zee collection
• Minimum PT of electron
• Maximum eta of electron
• Z mass window

To change the parameters, cd to the package share area:
• Reconstruction/RecExample/ZeeRec/…/share
• Edit (emacs) the jobOptions and change parameters.

• You can change these parameters, add additional parameters
and re-run the job

